The sixth sense

18th June 2015
Posted By : Jordan Mulcare
The sixth sense

A range of new road safety technology research projects that are being developed to reduce the number of accidents caused by drivers who are stressed, distracted and not concentrating on the road ahead has been revealed by Jaguar Land Rover. The Jaguar Land Rover 'Sixth Sense' research projects utilises advanced technology, from sports, medicine and aerospace, to monitor the driver's heart rate, respiration and levels of brain activity to identify driver stress, fatigue and lack of concentration.

The UK-based team is also looking at innovations that would reduce the amount of time the driver's eyes are off the road whilst driving, and how to communicate with the driver via pulses and vibrations through the accelerator pedal.

The basis of the research is to see if a car could effectively read the brainwaves that indicate a driver is beginning to daydream, or feeling sleepy, whilst driving. The human brain continually generates four or more distinct brainwaves at different frequencies. By continually monitoring which type of brainwave is dominant, an on-board computer could potentially assess whether a driver is focused, daydreaming, sleepy, or distracted.

"If brain activity indicates a daydream or poor concentration, then the steering wheel or pedals could vibrate to raise the driver's awareness and re-engage them with driving," added Dr Wolfgang Epple, Director of Research and Technology, Jaguar Land Rover. "If Mind Sense does not detect a surge in brain activity following the car displaying a warning icon or sound, then it could display it again, or communicate with the driver in a different way, to ensure the driver is made aware of a potential hazard."

The most common method for monitoring brainwaves is close to the source using sensors attached to a headband, something that would be impractical in a vehicle. Jaguar Land Rover is investigating a method already used by NASA to develop a pilot's concentration skills and also by the US bobsleigh team to enhance concentration and focus.

This detects brainwaves through the hands via sensors embedded in the steering wheel. Because the sensing is taking place further away from the driver's head, software is used to amplify the signal and filter out the pure brainwave from any background 'noise'. The company is currently conducting user trials to collect more information on the different brainwaves identified through the steering wheel sensors and will involve leading neuroscientists in the project to verify the results.

The company is assessing how a vehicle could monitor the well-being of the driver using a medical-grade sensor embedded in the seat of a Jaguar XJ. The sensor, which was originally developed for use in hospitals, has been adapted for in-car use and detects vibrations from the driver's heart beat and breathing.

Monitoring the physical health of the driver could not only detect the onset of sudden and serious illness that may incapacitate the driver, but also allow the car to monitor driver stress levels. This would then allow the car to help reduce stress, for example by changing mood lighting, audio settings and climate control.

Jaguar Land Rover is also working on new technologies that increase the speed and efficiency of the interaction between the driver and the infotainment screen. The aim is to reduce driver distraction by minimising the amount of time the driver's eyes are on the screen.

The Predictive Infotainment Screen prototype uses cameras embedded in the car to track the driver's hand movements and this enables the system to predict which button the driver intends to press. This allows successful button selection to take place in mid-air, which means users wouldn't have to touch the screen itself.  In user trials this increases the speed of successful button selection by 22% and therefore reduces the amount of time the driver is looking at the screen with their eyes off the road. 

The system could also use mid-air touch to provide the driver with a sensation, otherwise known as haptic feedback, that their button selection has been successful. Mid-air touch uses ultrasonics to create a touch sensation in mid-air without the skin needing to be in contact with any surface. The sensations could include a 'tap' on your finger or a 'tingling' on your fingertips. As touch provides an immediate response to the brain, there will be no need for the driver to glance at the screen for visual confirmation which would help keep their gaze on the road ahead.


You must be logged in to comment

Write a comment

No comments




Sign up to view our publications

Sign up

Sign up to view our downloads

Sign up

TU-Automotive Europe 2017
6th November 2017
Germany Munich
Smart Mobility Executive Forum
12th February 2018
Germany Berlin